Unsupervised feature extraction from multivariate time series for outlier detection
نویسندگان
چکیده
Although various feature extraction algorithms have been developed for time series data, it is still challenging to obtain a flat vector representation with incorporating both of time-wise and variable-wise association between multiple series. Here we develop an algorithm, called Unsupervised Feature Extraction using Kernel Stacking (UFEKS), that constructs in unsupervised manner. UFEKS kernel matrix the set subsequences from each horizontally concatenates all matrices. Then can treat row as its corresponding subsequence times We examine effectiveness extracted features under outlier detection scenario synthetic real-world datasets, show superiority compared well-established baselines.
منابع مشابه
Outlier Detection in Multivariate Time Series by Projection Pursuit
In this article we use projection pursuit methods to develop a procedure for detecting outliers in a multivariate time series. We show that testing for outliers in some projection directions can be more powerful than testing the multivariate series directly. The optimal directions for detecting outliers are found by numerical optimization of the kurtosis coefficient of the projected series. We ...
متن کاملOutlier Detection in Multivariate Time Series via Projection Pursuit
This article uses Projection Pursuit methods to develop a procedure for detecting outliers in a multivariate time series. We show that testing for outliers in some projection directions could be more powerful than testing the multivariate series directly. The optimal directions for detecting outliers are found by numerical optimization of the kurtosis coefficient of the projected series. We pro...
متن کاملUnsupervised Feature Learning from Time Series
In this paper we study the problem of learning discriminative features (segments), often referred to as shapelets [Ye and Keogh, 2009] of time series, from unlabeled time series data. Discovering shapelets for time series classification has been widely studied, where many search-based algorithms are proposed to efficiently scan and select segments from a pool of candidates. However, such types ...
متن کاملFeature eXtraction from sparse time series data
We present a computational methodology for qualitative analysis of sparse and noisy time series. Information about the changes of the signal level within a time series and the number of distinguishable signal levels is extracted and condensed into a pattern string. The qualitative analysis of a time series can be done at several levels of detail to generate pattern strings that encode the seque...
متن کاملMultivariate Feature Extraction for Prediction of Future Gene Expression Profile
Introduction: The features of a cell can be extracted from its gene expression profile. If the gene expression profiles of future descendant cells are predicted, the features of the future cells are also predicted. The objective of this study was to design an artificial neural network to predict gene expression profiles of descendant cells that will be generated by division/differentiation of h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Intelligent Data Analysis
سال: 2022
ISSN: ['1088-467X', '1571-4128']
DOI: https://doi.org/10.3233/ida-216128